Stability Testing Cosmetics for Shelf Life

Routine stability testing provides cosmetic manufacturers with critical data about their products’ safety and shelf life and can help you align your products with the FDA’s cosmetic stability testing guidelines. Although the US food and Drug Administration (FDA) does not yet require cosmetic manufacturers to conduct stability testing on products before commercially marketing them, we consider it a good manufacturing practice.

The information gained from stability testing can be useful to companies both externally and internally, creating successful ANDAs (abbreviated new drug applications) and informing product development, material procurement/management, and lifecycle management. This page provides an overview of the basics manufacturers should consider when developing a stability testing protocol for cosmetic products.

About Product Stability Testing

As is well-known, stability testing is essentially an experiment in which a batch of formula is created and placed into different environmental conditions for a set period of time. These conditions vary in temperature and humidity and are meant to simulate what happens to the product during its life cycle. The associated stability test protocol, then, should define test parameters that evaluate stability samples.

In the pharmaceuticals field, both the FDA and the European Medicines Agency require the stability testing of products before they can be sold to consumers. The main purpose is to measure and document the potency of medications up until a predicted expiration date.This data has proven important, especially considering the FDA has cited, within the past two years, stability-related issues as key factors in pharmaceutical recalls. And, as pharmaceutical and cosmetic manufacturers well understand, such product recalls are not only expensive and labor intensive, but they also can seriously damage one’s brand image.

Similar to pharmaceuticals, cosmetics naturally degrade over time, and stability testing via the manipulation of storage temperature and other factors can reveal the extent to which they degrade by measuring factors such as:

The natural degradation rate of key ingredients

A product’s ability to resist microbial intrusion

The product’s reactivity to packaging materials

Impurities exacerbated by the manufacturing process

Product response to heat, humidity, and light

One objective of stability testing is to ensure that a product maintains its intended physical, chemical and microbiological qualities—as well as functionality and aesthetics—when stored under appropriate (room temperature) conditions. Another is to glean data by foreseeing the stability of the cosmetic product over time within its useful life span, as well as compatibility between the formulation and the container material.

Cosmetic Stability Testing Guidelines

As stated, there currently are no existing enforceable or uniform protocols outlined by the FDA Code of Federal Regulations or European Commission Regulation No. 1223/2009 for the stability testing of cosmetics. The exception is for some OTC products, such as sunscreens, antiperspirants/deodorants, and dandruff shampoos. As such, a well-designed internal stability protocol must test those product attributes that are susceptible to change during storage, and that can can influence the quality, safety, and performance of the product. Stability studies include the evaluation of product quality at specific time intervals of a storage period under controlled conditions.

There are three basic forms of stability tests:

  1. Physical and chemical integrity: These evaluate the color, odor or fragrance, pH value, viscosity, texture, ow and emulsion stability, or signs of separation.
  2. Microbiological stability: These evaluate the degree of contamination with bacteria, mold and/or yeast.
  3. Packaging stability: These evaluate the effect of packaging on the contained product.

Stability testing for cosmetics is typically performed when:

  • A new product is developed;
  • An existing on-market product has been reformulated;
  • The production method has been modified, or production has moved to a new facility or vendor; and/or
    packaging has changed.
  • Currently, little published research exists to support specific methods for predicting cosmetic shelf life.

Reasons for the gap in cosmetic shelf life information:

  • The wide variety and complexity of cosmetic formulas and packaging;
  • The proprietary nature of most cosmetic products and their associated stability test methods; and
  • The scope of potential changes to be examined, including physical, chemical, microbial, functional or aesthetic.

Method Development and the Need for Accelerated Stability Testing

For each formulation type, manufacturers should determine the qualities to be examined, then test them at one or more temperature and humidity conditions. Test parameters should be evaluated and a decision made for each criterion based on the company’s own internal procedures and experience. Evaluations should allow for the deduction of predicted or real stability of the product.

Since time is such a crucial parameter in the development of a new cosmetic product, real-time cosmetic stability testing is not always feasible. In such situations, accelerated stability testing represents a good alternative. In accelerated stability testing, samples are stored in different elevated temperature and humidity conditions, as determined by product type and market demands.

Given the absence of official guidance from regulatory authorities concerning stability testing for cosmetic products, manufacturers should take into account these
considerations:

Conditions that might accelerate or predict the effects of stress on product consistency, including varying temperatures;
Changes to a product’s aesthetic properties, such as color, fragrance or texture, under varying conditions;
Variations in the manufacturing process that might affect a product; and
Packaging and its effect on formulation, and vice versa.

Steps for Cosmetic Shelf Life and Stability Testing

Following is a basic format for conducting a cosmetic formula stability test:

1. Batch Production

cosmetic container being filled by chemist

Calculate how much to produce based on the number of samples being used for testing. Stability guidelines from the International Conference on
Harmonization (ICH) state that three batches at a certain scale must be placed on stability; these batches should be representative of the quality of the material to be made on a production scale.

2. Product Container Filling

packaged cosmetic products in lab

The product should be filled in proper intermediate and final packaging, as it is best practice to test both the container and final packaging during stability testing. Samples should be representative of the batch size as well as the range of shades, fragrances and formulations to properly test stability extremes of the product. The closure system should be the same as the packaging proposed for storage and distribution.

3. Initial Test (Time Point Zero)

product sample test in progress

Once samples are filled, one should test for all characteristics to be evaluated later. Exact tests depend on the specific product, but minimally, one should record appearance, color, pH, viscosity readings and fragrance. For aerosol products, spray patterns should be tested.

4. Product Storage

stability testing storage preparation

Stability testing cosmetics requires different temperature and humidity conditions. Some standard temperatures include: 40°C/75% RH; 30°C/65% RH; 25°C/60% RH; and 5°C/no RH.

5. Product Evaluation

cosmetic product being evaluated

For long-term studies, the frequency of testing should be sufficient to establish the stability profile for the formulation. The frequency of testing at long-term storage conditions normally is three months during the first year; every six months during the second year; and once annually thereafter through the proposed re-test period. At the accelerated storage condition, a minimum of three points, including the initial and final time points (e.g. 0, 3 and 6 months), from a six-month study is recommended.

Where an expectation exists that data from accelerated stability studies for cosmetics is likely to approach significant change criteria, one should conduct increased testing, either by adding samples at the final time point or by including a fourth-time point in the study design. When testing at the intermediate storage condition is called for, due to a significant change under accelerated storage conditions, a minimum of four time points, including the initial and final time points (e.g. 0, 6, 9 and 12 months), from a 12-month study is recommended.

6. Determine the Cosmetic’s Stability

chemist checking cosmetic stability

After the de ned stability study period, one should have a high level of certainty whether the formula is stable or not. If test results yield unsatisfactory or questionable results, additional testing should be performed. Nearly all products will exhibit some change, so it will be up to the manufacturer to determine whether the product passes.

7. Conclusion Report

scientist compiling stability testing report

Once testing has been completed, a conclusion report on stability should be compiled, including:

  • Identification of the lab conducting the testing (if a third-party contractor is used);
  • Identification of the product;
  • Samples of primary packaging material used in the test;
  • Description of the methodology used to determine the product’s minimum durability, study conditions and results of the study; and
  • The signature of the person responsible for the study.

Conclusion

It can benefit cosmetic manufacturers to incorporate routine stability testing into the lifecycle of their products. By obtaining this critical data about a product, manufacturers can create better products while improving efficiencies in terms of material management. Furthermore, while the largest global regulatory authorities do not currently require cosmetic stability testing, they do require such testing for pharmaceuticals. This indicates at least some potential that the same expectation could be levied on cosmetic manufacturers eventually. In that event, early-adopter cosmetic manufacturers with routine stability testing processes in place would be well positioned to respond.